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Three Rods on a Ring and the Triangular Billiard 

Sheldon Lee Glashow I and Laurence Mittag 2 
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We demonstrate the equivalence of two seemingly disparate dynamical systems. 
One consists of three hard rods sliding along a frictionless ring and making 
elastic collisions. The other consists of one ball moving on a frictionless tri- 
angular table with elastic rails. Several applications of this result are discussed. 
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1. PROVING THE EQUIVALENCE 

We show that the motion of three pointlike rods making elastic collisions 
along a frictionless ring of length L can be mapped onto that of one point- 
like ball moving freely within a triangle and making elastic impacts with 
its legs. The masses of the rods are mk and their velocities along the ring 
are vk. When rods i and j collide, their relative velocity v~-vj  reverses, 
leaving the sum of their momenta mivi+mjv I unchanged. The conserved 
total momentum and energy are P=Zmkvk and T=�89 respec- 
tively, where sums here and henceforth extend over k = 1, 2, 3. With no loss 
of generality we assume P = 0, so that 

tokyo. = 0 ( 1.1 ) 

Let x~. be the arclength between the other two rods via the route avoiding 
rod k. The,positions of the rods can be expressed in terms of their fixed 
"center-of-mass" and these relative separations: 

x k ) 0  and Z xk=L (1.2) 
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Using (1.1), we put T in terms of squares of the velocity differences, e.g., 
"~'1 =U2-- 03: 

r=  mk 

with M = ~ mk and H = m~ m_,m3. We define 

/. 11121n3 g I ~-- ly t ~ c  ( 1 . 3 )  
U! = (v~-- v 3 ) -  ~ (In2 +ln3) M'  i in2---+ m3' 

with &c indicating cyclic permutations. An impact in which rod k does not 
partake results in 

Uk ---, - Uk, Vk ~ Vk, where T = �89 M( U~ + V~) (1.4) 

The Uk, V~. pairs may be regarded as components of the same vector in 
different Cartesian coordinates: 

VV= U~-~k+ Vkfk,  with W 2 H ~ =M 2 Z - -  (1.5) 
IH k 

if" is identified as the velocity of a ball on the triangular table to be 
specified. 

The three sets of basis vectors defined by (1.3) and (1.5) are related by 
rotations: 

(e)~) ( c~ 0~ sin 03"~//~ j ) 
_ = - -  _s in03 c o s 0 3 j \ f  I , &c (1.6) 

where 

X/ m i m2 l m3 M 
cos03= (m3+m~)(m3+rnl) ,  s in03= (m3+m_,)(m3+ml) '  &c 

or equivalently: 

mkcot 0k = x / ~ M  = M cot 01 cot 0_, cot 03 (1.7) 

The 0k lie in the first quadrant. The product of the three matrices defined 
by (1.6) and (1.7) reveals that ~ 0~.=~z. 
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The equivalent billiard table is an acute triangle with interior angles 
0k, legs lk parallel to fk,  and altitudes a k parallel to ~k- An interior point 
is given by its trilinear coordinates, the distances dk from each leg: 

dk>~0 and ~ dklk=lla I =La~=13a 3 

The mapping between rod spacings and points in the triangle preserving 
(1.2) is 

dkl=akx~, for k =  1, 2, 3 (1.8) 

Recognizing that dk= Uk, we find from (1.3) and (1.8) 

D?2l~l 3 
dt=xl  (m2+m3)M, &c (1.9) 

Eliminating dk from (1.8) and (1.9), we find the altitudes and legs of the 
triangle: 

~ m2m3 ~m,(m2 + m3) 
a t = L  (m2+m3)M' l t = L  M'- , &c (1.10) 

Between impacts, the motion of the rods on the ring corresponds to 
uniform motion of the ball on the table. A rod-rod  impact corresponds to 
the ball striking a leg of the triangle. 3 According to (1.4), the component 
of if" perpendicular to the leg reverses and its parallel component is 
unchanged--precisely the result of a ball-rail impact. Q.E.D. 

Equation (1.7) says that cot Ok ~ 0 as mk tends to infinity with the 
other masses kept fixed. The triangular table becomes right rather than 
acute. We regain the well-known equivalence between the right-triangular 
billiard and the motion of two hard rods on an elastically bounded line 
segment/~ Having found rods-on-a-ring motion equivalent to billiards on 
acute or right triangles, we ask whether obtuse triangles can play a role. 
Indeed they can, for the somewhat contrived case wherein rods 1 and 3 
have negative masses -m~ and -m3, with mk > 0  and M=m2-mt -m3  > O. 
As before, .colliding rods reverse their relative velocity. In the center-of- 
mass system, m~v~ + m 3 v 3 = m 2 v  2 and the energy is a negative-definite 
linear form in ,~.. Proceeding as above, we find the interior angles of the 
triangle: tan Ok = ( - 1 )k § ~ mk v/-~/li. The motion of these rods maps onto 
that of a ball on a triangular table with 02 > ~/2. 

The ball striking a vertex of the triangle corresponds to a corner shot in the billiard and a 
three-rod impact on the ring. The result of such a collision is not always well defined. 
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2. U S I N G  THE E Q U I V A L E N C E  

Much of what is known about billiards on triangular tables ~-''3~ is 
directly applicable to the mechanical system of three elastic rods on a ring. 
Here are some examples: 

(1) Any acute triangular table admits orbits of period six. Three rods 
on a ring with any positive masses display analogous periodic motions. 
They are realized for any initial positions of the rods if their initial relative 
velocities satisfy m,_.(m t - I - IH3)X I "~-FHI(IH2"q-IH3).Y3=O, or any cyclic per- 
mutation thereof. The minimal period is six, unless two balls collide 
when the third is at a specific position on the 
m3x~ = m ~ x 3 ,  This special case corresponds to 
acute triangle, just as any billiard orbit with odd 
of orbits with period 2n. ~3"4~ 

(2) With the exceptions of 2, 8, 12, and 
equilateral triangle can have any even periodJ 5~ 
correspond to periodic motions of three identical 

ring, e.g., if-u = 0 when 
the pedal 3-orbit on an 

period n is a limiting case 

20, billiard orbits on the 
Orbits with even periods 
rods with arbitrary initial 

positions along the ring. (Compare this result and that of the previous 
paragraph with Corollary 6 of ref. 3.) If the angles of the equivalent table 
are rational multiples of n, powerful billiard theorems ~6~ apply to the rod 
problem. However, rod masses corresponding to these rational triangles 
have no apparent physical significance. 

(3) The following remark paraphrases and generalizes Corollary 1 of 
ref. 3 and follows from the work of Kerckhoff et al.17~: The mechanical 
system of three elastic rods on a ring is typically ergodic. 

(4) All nonperiodic orbits on any polygonal table come arbitrarily 
close to at least one vertex ~4~ (generalizing results of ref. 8). Thus, three 
rods on a ring in a nonperiodic orbit must come arbitrarily close to a triple 
collision. 

(5) A generalization of out" procedure maps the motion of N + 1 rods 
with any masses onto that of one ball in an elastically bounded N-dimen- 
sional simplex, thus offering an alternative picture of the multicomponent 
Tonks gas. ~ 

Conversely, rods moving on a ring can shed light on billiards. Let 
( D )  be the mean distance between ball-rail impacts along a billiard trajec- 
tory. For the equilateral triangle of side l, the equivalent rod problem 
makes it obvious that ( D )  depends on the initial direction of motion but 
not the initial position, 4 and that ( D ) = l x / ~ / ( 4 c o s ~ b ) ,  where ~b is the 

4 This result is known to apply to billiard trajectories in almost every direction on any 
rational polygon. 
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smallest of the angles between the velocity of the ball and the normals to 
the legs of the triangle (0~<~<rc/6). A well-known theorem of Birkhoff 
implies that the extrema of ( D )  on any convex table correspond to peri- 
odic orbits. We obtain an orbit of period six for ( D )  ...... =l/2 and period 
four for (D)m~ . = I x/~/4. The geometric mean length of a randomly drawn 
chord of the triangle is/r~ v/3/12 and lies between these extrema. 

Proof. Let the initial motion of three identical rods on a ring be 
y, =b~. + v,t, with t as time and v3 > v2 > v~. When rods collide, their iden- 
tities swap, but their trajectories continue as straight lines. Collisions occur 
when any of the following are satisfied modulo L: 

(v3-v~_)t+b~-b2=O, (v3-vl) t+b3-bl=O, (v2-vi ) t+b2-bl=O 

Thus the mean collision rate is F =  2(v3--v~ )/L. From (1.3) and (1.10), we 
find F=4U2/Ix/~. The mean distance between impacts is ( D ) =  W/F. 
This yields ( D )  = v/3 l(4 cos ~b), with cos ~b = U,_/W and U_, the largest of 
the initial Uk. Periodic orbits corresponding to the extrema of ( D )  are 
readily constructed. 
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