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Three Rods on a Ring and the Triangular Billiard

Sheldon Lee Glashow' and Laurence Mittag”
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We demonstrate the equivalence of two seemingly disparate dynamical systems.
One consists of three hard rods sliding along a f{rictionless ring and making
clastic collisions. The other consists of one ball moving on a frictionless tri-
angular table with elastic rails. Several applications of this result are discussed.
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1. PROVING THE EQUIVALENCE

We show that the motion of three pointlike rods making elastic collisions
along a frictionless ring of length L can be mapped onto that of one point-
like ball moving freely within a triangle and making elastic impacts with
its legs. The masses of the rods are m, and their velocities along the ring
are v,. When rods i and j collide, their relative velocity v, — v, reverses,
leaving the sum of their momenta m;v,+ m;v;, unchanged. The conserved
total momentum and energy are P=3 m,v, and T=1Y m,v;, respec-
tively, where sums here and henceforth extend over k=1, 2, 3. With no loss
of generality we assume P =0, so that

Y myv, =0 (1.1)

Let x, be the arclength between the other two rods via the route avoiding
rod k. The positions of the rods can be expressed in terms of their fixed
“center-of-mass” and these relative separations:

x>0 and Y x,=L (1.2)
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Using (1.1), we put T in terms of squares of the velocity differences, e.g.,
"\"l = UZ - 1)3:

LU 1Y
2M “~ m,

with M =3 m, and IT1=m, m,m,. We define

m,ms m,
U =(,— [, V,= , & 1.3
1=(02=0s) (my+m) M 1=0 my+ms ¢ (13)

with &c indicating cyclic permutations. An impact in which rod k does not
partake results in

U,—» -U,, Vi— V.  where T=iM(U;+V3}) (14)

The U,, ¥, pairs may be regarded as components of the same vector in
different Cartesian coordinates:

- A 7 X3
W=U,2Z@é, S s i 1= —£ 5
Ui+ V. fx with W Ve > - (L5)

W is identified as the velocity of a ball on the triangular table to be
specified.
The three sets of basis vectors defined by (1.3} and (1.5) are related by

rotations:
cosf, sinf, é,>
= — : g " & .
( ) <—sin #;: cos 93><f| ’ ¢ (1.6)

:”’ l-.)>

where

cos 0 / m i, sin 0 / myM &c
= . 1n = s
! (my+my)(ms+m,) } (ms+ms)(mi+m,)

or equivalently:

mycot 0, =./II/M = M cot 8, cot 8, cot 0, (L.7)

The 8, lie in the first quadrant. The product of the three matrices defined
by (1.6) and (1.7) reveals that Y 0, =n=.
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The equivalent billiard table is an acute triangle with interior angles
8., legs I, parallel to f,, and altitudes «, parallel to é,. An interior point
is given by its trilinear coordinates, the distances d, from each leg:

d.20 and Y d.=la =la,=1la,

The mapping between rod spacings and points in the triangle preserving
(1.2) is

d.l=a;.x, for k=1,2,3 (1.8)

Recognizing that d,=U,, we find from (1.3) and (1.8)

[ mym,
d=x - 1.
F=N (my+m)M’ &e (1.9)

Eliminating d, from (1.8) and (1.9), we find the altitudes and legs of the

triangle:
M,y m (m, + m;3)
=L [—————— I =L |[—/———=—, & 1.10
CEEmrmy e VTN e ¢ (110

Between impacts, the motion of the rods on the ring corresponds to
uniform motion of the ball on the table. A rod-rod impact corresponds to
the ball striking a leg of the triangle.* According to (1.4), the component
of W perpendicular to the leg reverses and its parallel component is
unchanged—precisely the result of a ball-rail impact. Q.E.D.

Equation (1.7) says that cot 8, — 0 as m, tends to infinity with the
other masses kept fixed. The triangular table becomes right rather than
acute. We regain the well-known equivalence between the right-triangular
billiard and the motion of two hard rods on an elastically bounded line
segment.'"’ Having found rods-on-a-ring motion equivalent to billiards on
acute or right triangles, we ask whether obtuse triangles can play a role.
Indeed they can, for the somewhat contrived case wherein rods 1 and 3
have negative masses —m, and —m5, with m, >0 and M =m,—m -m;>0.
As before, colliding rods reverse their relative velocity. In the center-of-
mass system, m, v, +m;v;=m-,0, and the energy is a negative-definite
linear form in X7. Proceeding as above, we find the interior angles of the
triangle: tan 0, = (—1)**"' m, ./ M/II. The motion of these rods maps onto
that of a ball on a triangular table with 6, > /2.

* The ball striking a vertex of the triangle corresponds to a corner shot in the billiard and a
three-rod impact on the ring. The resuit of such a collision is not always well defined.
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2. USING THE EQUIVALENCE

Much of what is known about billiards on triangular tables'>?' is
directly applicable to the mechanical system of three elastic rods on a ring.
Here are some examples:

(1) Any acute triangular table admits orbits of period six. Three rods
on a ring with any positive masses display analogous periodic motions.
They are realized for any initial positions of the rods if their initial relative
velocities satisfy m,(m +m3) X, +m,(m,+m;) X, =0, or any cyclic per-
mutation thereof The minimal period is six, unless two balls collide
when the third is at a specific position on the ring, e.g., if x,=0 when
myx, =m,x,. This special case corresponds to the pedal 3-orbit on an
acute triangle, just as any billiard orbit with odd period # is a limiting case
of orbits with period 2n.**

(2) With the exceptions of 2, 8, 12, and 20, billiard orbits on the
equilateral triangle can have any even period.'>’ Orbits with even periods
correspond to periodic motions of three identical rods with arbitrary initial
positions along the ring. (Compare this result and that of the previous
paragraph with Corollary 6 of ref. 3.) If the angles of the equivalent table
are rational multiples of =, powerful billiard theorems'®’ apply to the rod
problem. However, rod masses corresponding to these rational triangles
have no apparent physical significance.

(3) The following remark paraphrases and generalizes Corollary 1 of
ref. 3 and follows from the work of Kerckhoff er al.'”: The mechanical
system of three elastic rods on a ring is typically ergodic.

(4) All nonperiodic orbits on any polygonal table come arbitrarily
close to at least one vertex'* (generalizing results of ref. 8). Thus, three
rods on a ring in a nonperiodic orbit must come arbitrarily close to a triple
collision.

(5) A generalization of our procedure maps the motion of N + 1 rods
with any masses onto that of one ball in an elastically bounded N-dimen-
sional simplex, thus offering an alternative picture of the multicomponent
Tonks gas.!”!

Conversely, rods moving on a ring can shed light on billiards. Let
{ D be the mean distance between ball-rail impacts along a billiard trajec-
tory. For the equilateral triangle of side /, the equivalent rod problem
makes it obvious that { D) depends on the initial direction of motion but
not the initial position,* and that (D) =1\/§/(4 cos @), where ¢ is the

*This result is known to apply o billiard trajectories in almost every direction on any
rational polygon.
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smallest of the angles between the velocity of the ball and the normals to
the legs of the triangle (0<¢ <n/6). A well-known theorem of Birkhoff
implies that the extrema of { D) on any convex table correspond to peri-
odic orbits. We obtain an orbit of period six for (D). =1//2 and period
four for (D i, =1 \/3/4. The geometric mean length of a randomly drawn
chord of the triangle is /x \/3/ 12 and lies between these extrema.

Proof. Let the initial motion of three identical rods on a ring be
v =b, + v, with ¢ as time and v, > v, > v,. When rods collide, their iden-
tities swap, but their trajectories continue as straight lines. Collisions occur
when any of the following are satisfied modulo L:

(U3‘-Uz)1+b3_bz=0, (03—U|)I‘+b3—‘b1=0, (UZ—UI)T+b2_b|=O

Thus the mean collision rate is /"= 2(v;—v,)/L. From (1.3) and (1.10), we
find '=4U,/I \/5 The mean distance between impacts is (D> = W/I.
This yields (D) = \/§ /(4 cos ¢), with cos ¢ = U,/W and U, the largest of
the initial U,. Periodic orbits corresponding to the extrema of (D) are
readily constructed.
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